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1. INTRODUCTION 

It is well known that transport coefficients may be expressed as integrals of 
time-correlation functions [l]. However, only very limited calculations of the 
transport coefficients have been made by this method, referred to as the correlation 
function method. For dilute gases Mori [2] has given an argument that the corre- 
lation function method yields results identical with the Chapman-Enskog theory. 
In the special case of rigid sphere molecules, Wainwright [3] has shown that the 
correlation function method is in close agreement with the Enskog dense gas 
theory, while for real fluids Zwanzig [4] has discovered a method for finding the 
density expansions of the transport coefficients in which the higher order coefficients 
involve the solution of difficult many-body molecular problems. 

As might be expected, rigorous calculations are virtually impossible for liquids. 
Because the time-correlation functions are averages over equilibrium ensembles, 
approaches similar to those used in the calculation of equilibrium properties may 
be applied in the calculation of transport coefficients. For example, one might 
use a simplified molecular model, as was done by Longuet-Higgins and Pople [5] 
for the self-diffusion coefficient of a rigid sphere liquid, or the radial distribution 
function approach, as was done by Douglass [6], also for self-diffusion. The purpose 
of this paper is to demonstrate the feasibility of yet another approach, the cell 
model method. 

Even for a cell model the complete time dependence of the correlation functions 
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can be determined only in principle. Therefore, as a matter of expediency, approx- 
imations must be introduced in calculation of the transport coefficients. Thus, little 
theoretical significance may be attached to the results of calculations made in this 
manner. However, even the simplest form for the self-diffusion time-correlation 
function consistent with expected behavior yields surprisingly good agreement 
between the calculated and experimental self-diffusion coefficient of liquid argon at 
84” K. 

In this paper only the simplest approximation for the cell model self-diffusion 
coefficient will be discussed in detail. This calculation is given in Section 3, following 
the development in Section 2 of general relationships for the time-autocorrelation 
functions. Approaches applicable to the calculation of higher order approximations 
to the self-diffusion coefficient may also be used for the calculation of viscosity 
and thermal conductivity coefficients. Some of the problems encountered in the 
computation of high order approximations are discussed in Section 4. 

2. THE AUTOCORRELATION FUNCTIONS 

The self-diffusion, viscosity and thermal conductivity time-correlation functions 
G,(t), G,(t), and G=(t) are related to their corresponding transport coefficients D, 
7, and K by the formulas 

D=&j” G,(t) dt, 
0 

1 
m ‘= VkT I G,(t) dt, o 

K = & jm G-0) dt, 
0 

(2.1) 

where t is the time, m is the mass per molecule, V is the volume of the system, T is 
the absolute temperature and k is the Boltzmann constant. Each of the time- 
correlation functions appearing in Eq. (2.1) may be written in the form 

G,(t) = K(OW), JW)~) J,(W), P(t))>>, (2.2) 

where the generalized index (II may be D, V or T. In this expression the generalized 
dynamical variable J,({R(t), P(t)}) is a function of the phase points {R(t), P(t)} at 
time t; its specific form is dependent upon the transport coefficient being considered 
The brackets ( ) denote an ensemble average over the initial phase points 
{R(O), P(O)> calculated with an equilibrium distribution, which we will take to be 
the usual canonical distribution in the following development. For notational 
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convenience we will denote J,({R(t), P(t)}) by Ja(t) and J,({R(O), P(O)}) simply by 
J, . Then the time evolution of JJt) is given by the dynamical equation 

g J,(t) = iLJ,(t), (2.3) 

where L is the well-known Liouville operator. We will asume the potential 
energy U of the system to be of the pairwise additive form 

(2.4) 

where uik is the mutual potential energy of particles j and k, Rj, = 1 Ri - R, I is 
their distance of separation and N is the number of particles in the system. For a 
potential energy of the form of Eq. (2.4) the Liouville operator may be written as 

where Pjk = -aUj,@Rj . The formal solution of Eq. (2.3) is 

J&l = ‘& 5 (iL)n J, = exp(itL) J, , 

(2.5) 

(2.6) 

so that Eq. (2.2) for the autocorrelation function may be written in the form 

G,(t) = (n!)-’ (Ja(iL)n J,) tn. (2.7) 

This expansion reveals the explicit time dependence of the autocorrelation 
functions. The coefficients (n!)-’ (J,(iL)” J,) are equilibrium ensemble averages 
and may therefore be computed, in principle, by the usual statistical mechanical 
methods. Unfortunately, however, even the lower order coefficients are rather 
lengthy and, as the order increases, correlations between increasing numbers of 
particles must be taken into account. We therefore will examine only the lower 
order coefficients. 

Self-Di&sion 

For self-diffusion, the dynamical variable of interest JD is merely the momentum 
of one of the particles of the system, say particle number one. The self-diffusion 
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autocorrelation function is therefore 

G,(t) = f (PI!)-l (J,(Z)” Jn) t” = f (n!)-l (P, . (iL)” PI) tn. (2.8) 
?I=0 7hO 

The odd ordered coefficients in Eq. (2.8) vanish by virtue of the fact that (PI”) = 0, 
if q is an odd integer. The first three even ordered coefficients in Eq. (2.8) are 

(O!)-1 (PI . (xy PI> = (P, * PI), (2.9) 

(2!)-1 (P, . (iL)2 PI) = -2; f (PIP1 : 
3=2 

(2.10) 

a42dli 
aRj aRj aR, aR, > 

+ -$-gkgjPIPl :g a3u1k )I? (2*11) 
1 aR, aR, aR, 

where we have used the convention (A, * B,) (A, * B,) = (A,A,) : (BIB,) and also 
its generalization to higher ordered products. The averages appearing in Eqs. 
(2.9)-(2.11) may, of course, be written as products of configuration and momentum 
averages. Since we have chosen to use a canonical distribution, we may easily 
compute the momentum averages which appear and thereby write the lower order 
coefficients as functions of configuration averages alone. The lower order coef- 
ficients in Eq. (2.8) may then be written as follows, 

(O!)-l (PI - (iL)O PI) = 3mkT, (2.12) 

(2!)-1 (P, * (iQ2 P,) = - ; kTf2 (2 + & $$, (2.13) 

(2.14) 
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where 

8 d3uli Ml = -;(k,+ (6$$+-- 16 d2yj 
+ R’z, dR”1, 

24 duly 
R,; dR;, - - R2,dR,, 9 (2.15) j=Z 13 

M,=~kT~((~)Z+~(~)2+3~~), 
j=2 13 13 11 1J 13 

(2.16) 

M3=;kT%f2($-s++-**), 
Rli Rlk d&j d&k b 

+j 
(2.17) 

2 dulj d2Ulk 1 duli dulk ---- 
Rli dRlj dR;, +qipydR,, . I> (2.19) 

It should be mentioned that lengthy tensorial and algebraic manipulation is 
required to put the fourth-order coefficient in the form given by Eqs. (2.14)-(2.19). 
We have written the fourth-order coefficients in this form to expose certain 
differences in the nature of the terms involved. It may be noted that Ml and M2 
involve averages over the positions of pairs of particles, while MS, n/r,, and 
M, involve averages over the positions of triplets. Further, Ml differs from M, 
intrinsicly because, aside from temperature dependence arising in the config- 
urational averages, it is explicitly proportional to the temperature squared 
whereas M, (also M3 , M4 , and MS) is explicitly proportional only to the first 
power of the temperature. Also, Ma, M4 , and M5 differ intrinsicly by virtue of 
of their varying dependence on the scaler products of the displacement vectors 
involved. 

It is obvious that approximations must be introduced to carry out the com- 
putation of even the lower order coefficients in the expansion of G,(t). The higher 
order coefficients are even more complicated, so that we will not discuss their 
calculation, although, in principle, such calculation could be made. 
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Viscosity 

For viscosity the dynamical variable of interest, Jy(x, y) is the (x, y) component 
of the tensor 1, , defined by the relationship 

(2.20) 

As for self-diffusion, the odd ordered coefficients in the expansion of the viscosity 
autocorrelation function 

G, = f (nY (J& YW)” Jdx, Y)> t”, (2.21) 
?Z=O 

vanish, so that G,(t) is an even function. The first two nonzero coefficients in 
G,(t) may be written in the following forms: 

#i #k 

&i(Y) &&) Rkdy) 

R:jRkL 

where Rij(X) and Rij( y) are the x and y components of the relative displacement 
vector Rij . 

Thermal Conductivity 

For thermal conductivity the dynamical quantity of interest &(x) is the x 
component of the vector JT , defined by 

JT = ; $l (v) - hP, + & il gl [%& - 2 $ (Rik * P,)], (2.24) 
#j 

where h is the enthalpy per particle. The odd ordered coefficients in the expansion 
of the thermal conductivity autocorrelation function 

m 

G=(t) = c (n!)-l (&(x)(&p J&x)) tn (2.25) 
la=0 
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vanish, so that CT(t), like G,(t) and G,(t), is an even function. We will write out 
only the zeroth-order coefficient as it adequately demonstrates the type of cal- 
culation which may be expected in a thermal conductivity computation, 

= N [$-(kT)3 - ;(kT)’ + f kT] + [& ckT12 - ; kT]j;Fk;T 
#i 

x 
Rfdx) dull 

%k%l - %k Rjl dRjl 
1 @jk . &) Rjk~~~~~(x) &!$L). (2.26) 

31 

In summary, we see that the autocorrelation functions for self-diffusion, viscosity 
and thermal conductivity are all even functions of the time and that the lower order 
coefficients in their time series expansions are similar. We have discussed the viscosity 
and thermal conductivity autocorrelation functions to show the type of calculations 
involved in the computation of the lower order coefficients in G,(t) and G=(f). 
It is evident that the calculations implied by Eqs. (2.22) and (2.23) and Eq. (2.26) 
are similar in nature to those for M5 , the most complicated term in the fourth-order 
coefficient of G,(t). In fact, essentially similar methods may be used for the 
computation of the lower order coefficients in the expansion of each of the auto- 
correlation functions considered in this work. However, it does turn out that 
the first two nonzero coefficients in the expansion of G,(t) are easier to compute 
than any of the nonzero coefficients in the expansions of G,(t) and CT(f). This is the 
principal reason for our more detailed study of the self-diffusion autocorrelation 
function. However, approximate methods which may be used for the computation 
of the fourth- and higher-order coefficients in the expansion of G,(t) could be 
applied readily in the computation of the lower order coefficients in the expansions 
of G,(t) and CT(t). 

3. APPROXIMATE SELF-DIFFUSION COEFFICIENT 

Because the time series expansions given in Section 2 for the autocorrelation 
functions are general, one may choose arbitrarily the method for computation 
of the configurational averages in the expansion coefficients. But regardless of the 
method chosen, it is obvious that transport coefficients cannot be calculated merely 
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by integrating separately each term in these expansions, since each resulting integral 
is divergent. However, as noted by Rice [7], the autocorrelation functions for 
dense fluids probably decay rapidly, so that approximate functions which are 
integrable and reproduce the exact autocorrelation functions for small times would 
presumably yield integrals which approximate the integrals of the exact auto- 
correlation functions. The series expansions of Section 2 are thus valuable to the 
extent that the lower order coefficients which may be calculated can be used to 
construct these approximate autocorrelation functions. 

The simplest approximate self-diffusion autocorrelation function consistent with 
the assumption of rapid decay is the exponential form 

G,(t) = $ exp(-(a> P), (3.1) 

in which 

(3.2) 

The approximate self-diffusion coefficient corresponding to this expression for 
G,(t) is 

The computational problem in this approximation is thus reduced to calculation of 
the configurational average (a). Douglass [6] has made this calculation using the 
radial distribution function approach; in this note we will consider only the cell 
model approach. 

The cell method used here is a direct application of the method presented by 
Mayer and Careri [8] which allows for the cooperative motion of pairs of molecules 
and for all occupancy by a variable number of molecules. Mayer and Careri 
present pertinent relationships as well as numerical results for the calculation of 
thermodynamic functions in the special case of nearest neighbor interactions 
in a fee lattice and cell occupancy by at most one molecule. The configurational 
probability distribution within each cell was assumed to be Gaussian. The pair 
potential which was used is a Morse-type potential with parameters determined by 
fitting the potential to the minimum in the Lennard-Jones (6-12) potential. 

To avoid the duplicate presentation of many of the Mayer and Careri results, 
much of their notation will be employed here. The use of a Gaussian distribution 
yields for the joint distribution the relation 

ph) = ( 22,sB,1,2 )” exp [ - (A)’ &I. (3.4) 
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The quantity rij is the dimensionless distance between molecules i andj, rii = RJR, 
where R is a scale parameter. The value of /3 is determined by minimization of the 
cell model expression for the configurational free energy. For sufficiently large 
values of p, roughly p > 5, P(rcj) + 0 at the cell boundary, so that integrations 
over cell volumes may be extended to rij = cc with little error. Use of Eq. (3.4) 
results in the following expression for (a): 

(4 = $ jjj P(r12) [u”(Rr,,) + & u’(Rr,J] dR,, 

= g j; Y%‘> 1 j;l;;-: [I” + $ u’(Rz)] dz/ dy. (3.5) 

The Morse-type potential used by Mayer and Careri, 

u(Rr) = uO[{exp[-12(rx/2’16 - 1)] - 2exp[-6(rx/21j6 - l)]}, (3.6) 

where x = 21/6RIR,, has a minimum of -u,, at the equilibrium distance R, , so 
that u,, and R, may be taken to be the corresponding Lennard-Jones (6-12) 
parameters. With omission of terms which are negligible if p is sufficiently large, 
the integrations in Eq. (3.5) yield 

(a) = 298 t---f.&-) {2(1 - 12x//12) exp[72(x//?)2 - 12x + 121 

- (1 - 6x//3”) exp[18(x//3)2 - 6x + 61). (3.7) 

To obtain numerical values for (a), x and /3 must be determined. The quantity 
x is directly related to p, the ratio of the number of molecules in the system to 
the number of cells, which like /3 is determined by minimization of the configuration 
free energy. The relation between x and p is p = x3 z@, where u is the volume 
per molecule and u,, is the volume per molecule at absolute zero temperature, 
u,, = 2-1/2R,3. Reference [8] should be consulted for the details of calculation of 
p and p. 

To provide a comparison of calculated and experimental self-diffusion coef- 
ficients, the approximate self-diffusion coefficient given by Eq. (3.3) was calculated 
for liquid argon at 84°K. The values of the Lennard-Jones (6-12) potential 
parameters [9] used in this calculation are u,/k = 116”K, R, = 3.889 x IO-* cm. 
The density [lo] was taken to be 1.423 g/cc. Using these values, the calculated 
self-diffusion coefficient is 2.28 x lO-5 cm2/sec, which compares favorably with 
the experimental value of (2.07 f 0.06) x 1O-5 cm2/sec reported by Corbett and 
Wang [1 11. Although, as stated previously, little theoretical significance may be 
placed on this result, it is interesting to note that the calculated value resulting 
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from the exponential approximation in Eq. (3.1) is larger than the experimental 
value. This would be expected if approximate functions were indeed capable of 
describing the behavior of the exact correlation function. This follows since, as 
pointed out by Rice [7], the self-diffusion autocorrelation function would be 
expected to oscillate about zero before asymptotically vanishing, whereas the 
exponential approximation does not allow oscillations. Of course, approximate 
correlation functions which do oscillate about zero may be constructed if higher 
order coefficients in the series expansions are computed. 

Two other results of the calculation of this section should be mentioned, namely 
the values of /3 and p determined by minimization of the configurational free 
energy, these are #I = 9.8 and p = 0.999. The fact that t3 > 5 justifies the inte- 
gration over all space rather than only over the cell volume. The fact that p is 
near unity justifies to some extent the use of a cell model, for if p were appreciably 
less than unity the number of nearest neighbors would be diminished accordingly. 
If there were fewer nearest neighbors, the decay of the self-diffusion autocorrelation 
function would presumably be less rapid and the exponential approximation less 
accurate. 

4. HIGHER ORDER APPROXIMATIONS 

The principal deterrent to calculations of higher order approximations to the 
autocorrelation functions is the fact that averages over the positions of more 
than two molecules must be computed. Because there are presently no methods 
which allow for the cooperative motion of more than two molecules in a rigorous 
manner, approximations even more drastic than those already introduced in 
Section 3 must be employed. 

We have developed one possible approach and have carried out computations 
through the fourth-order coefficient in the expansion of the self-diffusion auto- 
correlation function. This allows the use of such approximate functions as the 
exponentially damped cosine function 

G,(t) = exp(-(a) t”) COS[((U)~ - s(6))l12 t4], (4.1) 

where a is again the quantity given by Eq. (3.2) while b is given by the relation 

b = (72 mkT)-l i n/l, , 
Z-1 

with M1 - M5 defined by Eqs. (2.15)-(2.19). It is for the computation of (b) that 
a cell method permitting the calculation of configurational averages involving 
more than two molecules is required. To complicate matters, averages of tensor 
quantities of as high as second order must be computed. These calculations are 
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considerably more involved than calculations of scaler averages. In addition, 
scaler products of these tensor averages must be computed for the particular 
lattice configuration chosen. Therefore, because of the lengthy nature of the 
development of the cell method and the final expression for (b), and because the 
calculations which have been made must be considered tentative, no details will be 
presented at this time. We will merely relate the tentative result, &, = 
1.96 x 10-j cm2/sec, obtained by use of the approximate self-diffusion auto- 
correlation given in Eq. (4.1). 

5. DISCUSSION 

The purpose of this presentation has been to demonstrate the feasibility of using 
the cell method in the framework of the time-correlation function theory of 
transport properties. We have chosen to carry out explicit calculations for the 
self-diffusion autocorrelation function as a demonstration of the type of com- 
putation required for the calculation of this and other transport coefficient auto- 
correlation functions. Using a simple approximation to the autocorrelation 
function we have computed a corresponding approximate self-diffusion coefficient 
for liquid argon which is only about 10% greater than the reported experimental 
value. Some of the problems encountered in the computation of higher order 
approximations have been discussed. 

Due to the numerous approximations employed, no special significance may be 
placed on the fact that the calculated self-diffusion coefficient agrees so favorably 
with the experimental value. However, it does give some evidence to the feasibility 
of using the cell model approach for the calculation of approximate transport 
coefficients. It is anticipated that such calculations will generally be most accurate 
when applied to very high density fluids. Continued study of approaches to the 
calculation of higher order coefficients in the expansions of the autocorrelation 
functions would undoubtedly be of value. 
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